(-4b^2)-25=(-1)-2b-5b^2

Simple and best practice solution for (-4b^2)-25=(-1)-2b-5b^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-4b^2)-25=(-1)-2b-5b^2 equation:



(-4b^2)-25=(-1)-2b-5b^2
We move all terms to the left:
(-4b^2)-25-((-1)-2b-5b^2)=0
We get rid of parentheses
-4b^2-((-1)-2b-5b^2)-25=0
We calculate terms in parentheses: -((-1)-2b-5b^2), so:
(-1)-2b-5b^2
determiningTheFunctionDomain -5b^2-2b+(-1)
We add all the numbers together, and all the variables
-5b^2-2b-1
Back to the equation:
-(-5b^2-2b-1)
We get rid of parentheses
-4b^2+5b^2+2b+1-25=0
We add all the numbers together, and all the variables
b^2+2b-24=0
a = 1; b = 2; c = -24;
Δ = b2-4ac
Δ = 22-4·1·(-24)
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{100}=10$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-10}{2*1}=\frac{-12}{2} =-6 $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+10}{2*1}=\frac{8}{2} =4 $

See similar equations:

| -22/32y=5/8 | | -4x=-5x-3 | | 14x=x-3 | | 8.80+(1/3x+1)+1/5x=× | | -83=m-8(-4m-2) | | 2=3x-14/4 | | e-18/11=13/4 | | 3x=-(7x+20) | | -3-5(x+4)=8(2x-3) | | 0.5(2x)+(-0.2)(10)=1x+-2 | | 1.5x+15=60 | | 12b+10(4b+1)=218 | | –3(6–r)=6 | | 14=a/9−5 | | 20+4=10+5d | | 0.16(x+6)=11 | | -8(-2-2x)=128 | | 15y+42=102 | | 8a+5=61 | | 14r=-8+6r | | x-8=1/3x | | X+3x+7=15 | | 390=8(8-8m)+6 | | 9x+28=55 | | 4d-13-6=13.20 | | 136+d=8 | | -511+g=1922 | | 5v+35=12 | | -6(-8x-1)=198 | | -10x-100=8x-2-4x | | -6(-8x-1)=128 | | X+36=-3x |

Equations solver categories